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string theory reflect the quantum mechanical nature of the topological string partition

function. We present two new results which make this assertion more precise: (i) we

give a new, purely holomorphic version of the holomorphic anomaly equations, clarifying

their relation to the heat equation satisfied by the Jacobi theta series; (ii) in cases where

the moduli space is a Hermitian symmetric tube domain G/K, we show that the general

solution of the anomaly equations is a matrix element 〈Ψ|g|Ω〉 of the Schrödinger-Weil rep-

resentation of a Heisenberg extension of G, between an arbitrary state 〈Ψ| and a particular

vacuum state |Ω〉. Based on these results, we speculate on the existence of a one-parameter

generalization of the usual topological amplitude, which in symmetric cases transforms in

the smallest unitary representation of the duality group G′ in three dimensions, and on

its relations to hypermultiplet couplings, nonabelian Donaldson-Thomas theory and black

hole degeneracies.
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1. Introduction

On top of its rich mathematical structure, topological string theory offers the most practical

way of computing certain higher-derivative corrections to the low energy effective action

in N = 2 compactifications of physical string theory. It has played a central role in recent

studies of subleading corrections to the Bekenstein-Hawking entropy of BPS black holes [1 –

3]. A particularly striking development is a direct relation between the degeneracies of black

hole micro-states and the topological string partition function, conjectured by Ooguri-

Strominger-Vafa (OSV) [4].
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The topological string partition function satisfies “holomorphic anomaly” equations

derived by Bershadsky-Cecotti-Ooguri-Vafa (BCOV) [5, 6], which describe its dependence

on a “background” point of moduli space. These equations are best understood by viewing

the topological string partition function as the wave function of a background-independent

state in a certain Hilbert space, expressed in a background-dependent basis of coherent

states [7]. In particular, as emphasized in [8], for the application to the OSV conjecture one

should choose a basis of coherent states corresponding to a “real polarization” of the wave

function. The purpose of the present work is to tighten the wave function interpretation of

the holomorphic anomaly equations, by recasting these equations in a purely holomorphic

way, and representing their solution as a matrix element in an appropriate representation

of the continuous global symmetry group of the moduli space, when such a symmetry

exists.

To motivate our approach, recall that the wave function interpretation of the holomor-

phic anomaly equations was originally suggested [7] by analogy with the heat equations

[
i
∂

∂t
− ∂2

∂y2

]
θ(t, y) = 0, (1.1)

∂

∂t̄
θ(t, y) = 0, (1.2)

obeyed by the classical Jacobi theta series θ(t, y). However, the anomaly equations as

written in [6] are not quite identical to (1.1), (1.2). In particular, the topological string

partition function ΨBCOV is neither purely holomorphic nor purely antiholomorphic. So

the precise analogy between ΨBCOV and θ(t, x) has remained slightly obscure.

In section 2 of this paper, we draw a precise analogy between the topological string

partition function ΨBCOV (or rather, its variant ΨV(t, t̄, x) as defined in [8]), and the

complex conjugate of the “canonical” Jacobi theta function Θ(t, t̄, x̄),

Ψ∗
V (t, t̄, x̄) ∼ Θ(t, t̄, x̄), (1.3)

where Θ(t, t̄, x̄) is a non-holomorphic modular function which differs from the classical

holomorphic θ(t, y) by a simple transformation,

Θ(t, t̄, x̄) =
√

Im t exp

(
y2

Im t

)
θ(t, y), (1.4)

y = (Im t)x̄. (1.5)

Namely, by transformations of Ψ∗
V similar to (1.4), (1.5), described in section 2.6, we pro-

duce a modified partition function Ψhol, which is purely holomorphic and obeys a heat

equation (2.69) closely analogous to (1.1). These transformations, valid in complete gener-

ality, provide a more concrete footing for the widely accepted idea that the anomaly equa-

tions of the topological string partition function should be analogous to the heat equation

of a theta function. Along the way we also clarify a few details which have not appeared

explicitly in the literature, in particular the relation between the one-loop holomorphic

anomaly and the metaplectic correction to geometric quantization.
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Importantly, our transformation from Ψ∗
V to Ψhol introduces a dependence on a choice

of symplectic basis, which is not invariant under large biholomorphisms of the Calabi-

Yau threefold; consequently, the transformation of the holomorphic partition function Ψhol

under large biholomorphisms is more complicated than that of the original ΨV, as we discuss

in section 2.8. This parallels the fact that the holomorphic θ(t, z) has a more complicated

transformation under SL(2, Z) than does the non-holomorphic exp
(

z2

Im t

)
θ(t, z).

In section 3, we specialize the discussion to cases where the moduli space is a symmetric

special Kähler manifold G/K. While such cases are very special (in particular they require

the absence of genus 0 worldsheet instanton corrections), they allow us to develop a second

aspect of the analogy between Ψ and θ(t, z), representing the topological amplitude as a

matrix element in a unitary representation of an extension of G. To appreciate this point,

recall the standard interpretation of θ(t, z) in representation theory [9, 10]: One considers

the semi-direct product G̃ = SL(2, R) n H, where H is the three-dimensional Heisenberg

algebra [q̂, p̂] = Z, and G = SL(2, R) acts on H/Z in the fundamental representation. Both

G and H act naturally on the Hilbert space obtained by quantizing R
2, which we call the

“Schrödinger-Weil representation” of G̃. Then θ(t, z) may be written as a matrix element

in this representation,

θ(t, y) = 〈Ψ|eybpetT |Ω〉, (1.6)

where T is the positive root generator
(

0 1
0 0

)
of sl(2, R), |Ω〉 is a state annihilated by q̂,

and 〈Ψ| is a state invariant under a subgroup of SL(2, Z). In this interpretation the

heat equation (1.1) becomes a consequence of an operator identity in the Schrödinger-Weil

representation,

ZT − p̂2 = 0, (1.7)

if we choose the central generator to act as Z = i. Note that the heat equation would hold

no matter which state |Ψ〉 we choose; the most general solution is obtained by choosing an

arbitrary |Ψ〉.
We show that a similar story holds for the topological string partition function, as one

would expect from its wave function interpretation: there is a 1-1 correspondence between

states |Ψ〉 in the Schrödinger-Weil representation of an appropriate group G̃ = G n H and

solutions to the anomaly equation (2.69). Given |Ψ〉, the corresponding solution can be

written as a matrix element similar to (1.6), given in (3.23). From this point of view, the

holomorphic anomaly equations are consequences of identities (3.20) in the Schrödinger-

Weil representation, analogous to (1.7) (but slightly more complicated.)

In section 3.8 we discuss a third aspect of the analogy between Ψ and θ, which may

be motivated as follows. Equation (1.7) can be obtained by noting that the non-reductive

group SL(2, R) n H is naturally obtained as a subgroup of the more familiar Sp(4, R),

and the Schrödinger-Weil representation of SL(2, R) n H is contained in the metaplectic

(Weil) representation of Sp(4, R). From this point of view, (1.7) is just one of a large class

of quadratic operator equations which hold in the Weil representation of Sp(4, R). We

note that a very similar situation obtains for the topological string: the identities (3.20)

involving generators of G̃ come directly from relations in the “minimal representation” of a

– 3 –
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larger and more familiar group G′. We also briefly discuss the automorphic version of this

relation, which in the Sp(4, R) case gives rise to the notion of Fourier-Jacobi coefficients.

We emphasize that none of our rigorous results bear directly on the problem of com-

puting the topological string partition function; they are, rather, a clarification of what

kind of object the partition function is. However, they do tie in naturally to some other

directions of inquiry which were really the original motivation, and which we discuss in

section 4.

In particular, we note that the group G′ mentioned above arises physically as the

local isometry group of the moduli space upon compactification from d = 4 to d = 3.

The group G′ has been proposed as a spectrum generating symmetry group in d = 4

supergravity, and its minimal unitary representation studied in connection with black hole

degeneracies (see [11] and references therein.) For the relation to the topological string,

the most relevant point is that the minimal representation of G′ contains a one-parameter

family of Schrödinger-Weil representations of G̃ with varying values for the center Z = i~,

with the representation relevant for the topological string arising at ~ = 1. This suggests

the existence of a “generalized topological amplitude”, a one-parameter extension of the

usual perturbative topological amplitude, which (in the special cases we consider) would

be described by a state in the minimal representation of G′. We conjecture that this

generalized topological amplitude could control corrections to hypermultiplet couplings

and be related to the nonabelian Donaldson-Thomas theory. We also briefly discuss the

appealing possibility that the topological amplitude could literally be a theta function

(in the appropriate sense), which would in principle determine the whole nonperturbative

partition function up to at most a finite-dimensional ambiguity.

For completeness, in Appendices A and B we discuss a relation between the real-

polarized wave function and the “holomorphic ambiguities” introduced by BCOV in solving

the anomaly equations, and the form of the wave function in a positive-definite holomorphic

polarization.

Holomorphic rewritings of the anomaly equations in some special cases have appeared

before in the literature, e.g. [12]. The anomaly equations and their quantum-mechanical

interpretation have also been reexamined in [13, 14]. Modular properties of the anomaly

equations have recently been discussed in [15], and treated more generally in [16], which

appeared while this paper was being finalized. Parts of [16] overlap with parts of section 2

of this paper.

2. The anomaly equations revisited

In this section, we discuss various forms of the holomorphic anomaly equations. Most of

these have already appeared in the literature; our main purpose is to introduce a new

version of the topological string partition function which is purely antiholomorphic, and

whose dependence on the antiholomorphic variables is governed by a heat-type equation

given in (2.69) below. Along the way, we also clarify some aspects of the more standard

presentations of the topological amplitude. Our discussion is couched in the language of

– 4 –
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the B model topological string on a Calabi-Yau threefold X, but with suitable changes of

notation and wording it would apply equally well to the A model.

2.1 BCOV’s holomorphic anomaly equations

Let M denote the Teichmüller space of complex structures on X, equipped with its Weil-

Petersson metric g. Let T be the holomorphic tangent bundle to M, and L the line bundle

H3,0(X, C) over M.

In terms of local complex coordinates on M, a point t ∈ M may be written (ti, t̄ī),

with i = 1, . . . , nv, where nv = h2,1(X). We also work in a local trivialization of the line

bundle L, given by some local holomorphic section Ω(t). Then let K denote the Kähler

potential, defined by

K(t, t̄) = − log‖Ω‖2 = − log i

∫

X
Ω ∧ Ω. (2.1)

The metric compatible connection in L is

Dis = (∂i − ∂iK) s. (2.2)

Moreover, K also serves as a local Kähler potential for the metric on M:

gij̄ = ∂i∂̄j̄K. (2.3)

Following [6], we consider the generating function of the genus g correlation functions

C
(g)
i1···in

of n chiral fields, in the B model topological string theory on X:

W (ti, t̄ī;xi, λ) =
∞∑

g=0

∞∑

n=0

1

n!
λ2g−2 C

(g)
i1···in

(t, t̄) xi1 · · · xin +
( χ

24
− 1

)
log λ. (2.4)

This is a formal series which need not converge; throughout this paper we will ignore this

issue. We consider xi as the coordinates of a vector xi ∂
∂ti

∈ T . Similarly we consider the

inverse topological string coupling λ−1 as the coordinate of an underlying vector λ−1Ω ∈ L,

and C
(g)
i1···in

as the coordinate expression of an element in (T ∗)n ⊗ L2g−2.

The correlation functions C(g) are given by C
(g)
i1...in

= 0 for 2g − 2 + n ≤ 0 (so W does

not incorporate the genus 0 and 1 vacuum amplitudes) and

C
(g)
i1···in

(t, t̄) =





Di1 · · ·Din−3
Cin−2in−1in for g = 0, n ≥ 3,

Di1 · · ·DinF1 for g = 1, n ≥ 1,

Di1 · · ·DinFg for g ≥ 2.

(2.5)

In particular, Cijk = C
(0)
ijk is the tree-level three-point function, related to the curvature of

M by the special geometry formula1

Rij̄kl̄ = gij̄gkl̄ + gil̄gkj̄ − e2KCikmC̄j̄l̄n̄gmn̄. (2.6)

1Note that our definition of Cijk differs from the one used in most of the supergravity literature by a

factor eK .
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The covariant derivatives in (2.5) incorporate the Levi-Civita connection acting on T ∗,

given in coordinates by Γk
ij = gkk̄∂igjk̄, as well as the connection −∂K in L. So, for

example,

DiFg = (∂i − (2g − 2)∂iK)Fg, (2.7)

DiC
(g)
j = (∂i − (2g − 2)∂iK − Γk

ij∂k)C
(g)
j . (2.8)

In [6] the topological string partition function is written

ΨBCOV = exp
[
W (ti, t̄j̄ ;xi, λ)

]
. (2.9)

Because of the last term in (2.4), ΨBCOV is a section of L1− χ

24 .2 The holomorphic anomaly

equations can be expressed as two conditions on ΨBCOV:
[

∂

∂t̄i
− λ2

2
e2KC̄īj̄k̄g

jj̄gkk̄ ∂2

∂xj∂xk
+ gījx

j

(
λ

∂

∂λ
+ xk ∂

∂xk

)]
ΨBCOV = 0, (2.10)

[
∂

∂ti
− Γk

ijx
j ∂

∂xk
+ ∂iK

(
χ

24
− 1 − λ

∂

∂λ

)
− ∂

∂xi
+ ∂iF1 +

1

2λ2
Cijkx

jxk

]
ΨBCOV = 0.

(2.11)

The second equation (2.11) summarizes the relations (2.4), (2.5), while (2.10) reproduces

the holomorphic anomaly equations proper, which relate the antiholomorphic derivative of

the genus-g correlation function to correlators at lower genera.

2.2 Verlinde’s holomorphic anomaly equations

E. Verlinde’s version of the holomorphic anomaly equations [8] is obtained from (2.10),

(2.11) by making two transformations. The first step is to rescale xi
new = λ−1xi

old, so that

the first term in (2.4) vanishes at λ = 0. After this rescaling xi are coordinates in T ⊗ L,

so altogether (ti, t̄ī, xi, λ−1) are coordinates on the total space of L ⊕ (T ⊗ L) over M; we

call this total space M̃. Second, note that the anomaly equation for the one-loop vacuum

amplitude [5],
∂

∂ti
∂

∂t̄j̄
F1 =

1

2
e2KCiklC̄j̄k̄l̄ gkk̄gll̄ −

( χ

24
− 1

)
gij̄ , (2.12)

(which is contained in (2.10) at leading order in λ), is solved locally by 3

F1 = −1

2
log |g| +

(
nv + 1

2
− χ

24
+ 1

)
K + f1(t) + f̄1(t̄). (2.13)

Here f1(t) is a holomorphic function and |g| = det(gij̄). To patch these local solutions

together into the global F1, ef1(t) should be the coordinate expression of a section of

L χ

24
−1−nv+1

2 ⊗ K
1

2

M, where KM is the canonical bundle of M, locally trivialized by the

section dt1 ∧ · · · ∧ dtnv . Then defining

ΨV(t, t̄;x, λ) = ef1(t)ΨBCOV(t, t̄;λx, λ), (2.14)

2More precisely, ΨBCOV is a section of the line bundle obtained by pulling back L1− χ
24 from M; we will

abuse language in this way several times.
3This equation corrects a sign error in (4.7) of [8], which affects (4.4) and (4.5).
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ΨV is a section of L−nv+1

2 ⊗K
1

2

M over M̃, and the anomaly equations for ΨV are expressed

purely in terms of the special geometry of M:

[
∂

∂t̄i
− 1

2
e2KC̄īj̄k̄g

jj̄gkk̄ ∂2

∂xj∂xk
− gījx

j ∂

∂λ−1

]
ΨV = 0, (2.15)

[
∇ti − Γk

ijx
j ∂

∂xk
− 1

2
∂ti log |g| − λ−1 ∂

∂xi
+

1

2
Cijkx

jxk

]
ΨV = 0, (2.16)

where

∇i =
∂

∂ti
+ ∂iK

(
xk ∂

∂xk
+ λ−1 ∂

∂λ−1
+

nv + 1

2

)
. (2.17)

A crucial observation for what follows [8] is that, provided both ΨV and Ψ′
V obey (2.15)

and (2.16),

∫
dxi dx̄ī dλ−1 dλ̄−1

√
|g| e−

nv+1

2
K

exp
(
−e−Kxigij̄ x̄

j + e−Kλ−1λ̄−1
)
Ψ

′∗
V(t, t̄; x̄, λ̄) ΨV(t, t̄;x, λ)

(2.18)

is a pure number, independent of (t, t̄). This is proven by formal integration by parts.

2.3 The wave function property and coherent states

The holomorphic anomaly equations were elegantly reinterpreted in [7] as the wave function

property of the topological string. In this section we review this reinterpretation.

Recall that ΨV is defined on the total space M̃ of the holomorphic vector bundle

L ⊕ (T ⊗ L) over M. The fiber at t ∈ M of this vector bundle can be identified with

the fixed vector space H3(X, R), equipped with a particular “Griffiths” complex structure

Jt. Explicitly, the correspondence between an element γ ∈ H3(X, R) and the coordinates

(λ−1, x) on L ⊕ (T ⊗ L) is given by the Hodge decomposition of H3(X, C):

γ = λ−1Ω + xiδiΩ + xīδ̄iΩ̄ + λ̄−1Ω̄

∈ H3,0 ⊕ H2,1 ⊕ H1,2 ⊕ H0,3

' L ⊕ (T ⊗ L) ⊕ (T̄ ⊗ L̄) ⊕ L̄.

(2.19)

Here we introduced δiΩ = (∂i + ∂iK)Ω, which is the (2, 1) part of ∂iΩ. Using this decom-

position one can define

Jt =

{
+i on H3

+ = H3,0 ⊕ H2,1,

−i on H3
− = H0,3 ⊕ H1,2.

(2.20)

Then H3(X, R) with the complex structure Jt is identified with the +i-eigenspace H3
+.

So as a complex vector bundle over M, L ⊕ (T ⊗ L) is isomorphic to the bundle of +i-

eigenspaces H3
+, which we write as H3

+.

H3(X, R) also carries a canonical symplectic structure, inherited from the antisym-

metric pairing (α, β) =
∫
X α ∧ β on Ω3(X, R): in our (x, λ−1) coordinates it is

ω = i e−K
(
gij̄dxi ∧ dx̄j̄ − dλ−1 ∧ dλ̄−1

)
. (2.21)
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This ω is compatible with Jt for every t, so the Jt give holomorphic polarizations on the

fixed space H3(X, R). Witten’s proposal [7], revisited in [8], is that ΨV(t, t̄;x, λ) at fixed t

should be viewed as a wave function obtained by quantizing H3(X, R) in this holomorphic

polarization,4 and the anomaly equations (2.15), (2.16) simply implement the infinitesimal

Bogoliubov transformation which results from a change of (t, t̄).

In other words: there is some Hilbert space H obtained by quantizing H3(X, R) with

the symplectic form ω. In H there should be a state |Ψ〉 which contains the background-

independent information in the topological string theory. Further, there should be a (t, t̄)-

dependent basis of H∗ consisting of “coherent states” (t,t̄)〈x, λ|, such that

ΨV(t, t̄;x, λ) = (t,t̄)〈x, λ|Ψ〉. (2.22)

The holomorphic anomaly equations obeyed by ΨV then express the variation with (t, t̄)

of the states (t,t̄)〈x, λ|; they give no constraint on the state |Ψ〉.
Let us prove a few facts about the basis of coherent states. By definition they diago-

nalize the (t, t̄)-dependent annihilation operators λ̂−1 and x̂i:

(t,t̄)〈x, λ| λ̂−1(t, t̄) =(t,t̄) 〈x, λ| λ−1, (t,t̄)〈x, λ| x̂i(t, t̄) =(t,t̄) 〈x, λ| xi. (2.23)

We also want to work out the action of the creation operators ̂̄λ−1(t, t̄) and ̂̄xī(t, t̄). These

should be the adjoints of the annihilation operators. To determine them explicitly we need

to use the formula (2.18), now interpreted as

〈Ψ′|Ψ〉 =

∫
dxi dx̄ī dλ−1 dλ̄−1

√
|g| e−

nv+1

2
K

exp
(
−e−Kxigij̄ x̄

j̄ + e−Kλ−1λ̄−1
)
〈Ψ′|x̄, λ̄〉〈x, λ|Ψ〉, (2.24)

which expresses the “completeness relation” for the basis of coherent states,
∫

dxi dx̄ī dλ−1 dλ̄−1
√

|g| e−
nv+1

2
K exp

(
−e−Kxigij̄ x̄

j̄ + e−Kλ−1λ̄−1
)
|x̄, λ̄〉〈x, λ| = 1.

(2.25)

Using (2.25) and integrating by parts, we can show that

(t,t̄)〈x, λ|̂̄λ−1 = −eK ∂

∂λ−1 (t,t̄)
〈x, λ|, (t,t̄)〈x, λ| ̂̄xī = eKgīj ∂

∂xj (t,t̄)
〈x, λ|. (2.26)

consistently with the commutation rules which follow from (2.21),

[λ̂−1, ̂̄λ−1] = eK , [x̂i, ̂̄xj̄ ] = −eKgij̄ (2.27)

Then exponentiating these derivative operators, one can construct all of the coherent states

by acting with creation operators on a fixed vacuum:

(t,t̄)〈x, λ| =(t,t̄) 〈Ω| exp
[
e−K

(
−λ−1̂̄λ−1 + xigij̄

̂̄xj̄
)]

, (2.28)

4It should be stressed that, despite the adjective “holomorphic”, ΨV does depend on t̄; the holomorphy

here refers to the dependence on the phase space coordinates (x, λ) only; the coordinates (t, t̄) are not part

of the phase space we are quantizing, but rather parameterize the possible polarizations.
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where 〈Ω| = 〈xi = 0, λ−1 = 0|.
Substituting (2.28) in (2.22), we conclude that the topological wave function in Ver-

linde’s presentation can be written as an overlap

ΨV(t, t̄;x, λ) = (t,t̄)〈Ω| exp
[
e−K

(
−λ−1̂̄λ−1 + xigij̄

̂̄xj̄
)]

|Ψ〉. (2.29)

To reduce clutter, we will sometimes drop the explicit (t, t̄) dependence of coherent states

and creation/annihilation operators from the notation.

We conclude this section with two comments. First, note that the Hermitian metric

constructed from ω and Jt is not positive definite, but rather has signature (nv, 1) (as

reflected by the wrong-sign Gaussian in the integrand of (2.18)). This point, well known

in the mathematics literature and also noted e.g. in [17], implies that the coherent states

we considered above are not normalizable states. Hence it seems that these coherent states

must be considered as somewhat formal objects. To perform the quantization rigorously

in this indefinite-signature polarization, one should perhaps introduce higher cohomology

instead of trying to represent the states as holomorphic functions. Alternatively, one could

switch to a polarization for which the metric is positive definite. There is a natural choice

available, namely the “Weil” complex structure J ′
t , given by the Hodge ? operator on

Ω3(X, R), which acts as

J ′
t =

{
+i on H3,0 ⊕ H1,2,

−i on H0,3 ⊕ H2,1.
(2.30)

Formally, one can transform from the Jt polarization to the J ′
t polarization by Fourier

transforming over λ−1 (see appendix B). One complication in this approach is that J ′
t does

not vary holomorphically with t (unlike Jt). Throughout this section we will work formally

in the indefinite-signature polarization, which is the one where direct contact can be made

with the anomaly equations .

Second, let us comment on the occurrence of the line bundle L−nv+1

2 ⊗K
1

2

M pulled back

from M, where both ΨV and the coherent states (t,t̄)〈x, λ| are valued. This bundle, which

we call K 1

2 , is naturally isomorphic to a square root of
∧nv+1 (T ∗ ⊗ L∗ ⊕ L∗). In other

words, an element of K 1

2 is the same as a square-root of a holomorphic top-form on H3
+.

The wave function ΨV is hence naturally “twisted” by the bundle of half-forms. Such a

twisting makes no essential difference if one looks only at a fixed t, but it introduces phase

factors in the Bogoliubov transformations which arise upon varying t; indeed, twisting by

K 1

2 is exactly what is needed to ensure that the wave function has trivial monodromy upon

traveling around a contractible loop in M. This is known as the “metaplectic correction”

to the quantization of the phase space (see e.g. [18, 19]), and plays an important rôle in

making the topological amplitude covariant under electric-magnetic duality.

2.4 Homogeneous coordinates

To simplify the anomaly equations further, it is convenient to replace M by the space M̂
of complex structures on X with a chosen holomorphic 3-form Ω. The benefit of so doing is

that M̂ admits a class of particularly nice coordinate systems. To construct them, first note
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that M̂ can be embedded into H3(X, C) just by mapping a point of M̂ to its corresponding

Ω. This embedding realizes M̂ as a complex Lagrangian cone inside H3(X, C).

Suppose we choose a symplectic basis (or “marking”) {AI , BI}, I = 0, . . . , nv, for

H3(X, R). Then define coordinates on H3(X, C) by

XI =

∫

AI

Ω, FI =

∫

BI

Ω, (2.31)

and introduce the “characteristic function”

F =
1

2
XIFI . (2.32)

The cone M̂ is said to be “generated” in this basis by F (X): this means M̂ is the subset

of H3(X, C) defined by

FI(X) =
∂F

∂XI
. (2.33)

In particular, a point (XI , FI) on M̂ is determined locally by its XI , so the XI give a

complex coordinate system on M̂, which can also be viewed as a homogeneous coordinate

system on M. We also introduce

τIJ(X) = ∂I∂JF, (2.34)

CIJK(X) = ∂I∂J∂KF. (2.35)

In what follows it will be convenient to think of ΨV as defined on M̂; concretely, we consider

ΨV to depend on the XI as independent variables, and to be invariant under their overall

rescaling.

We expand γ ∈ H3(X, R) in terms of the basis {∂IΩ} instead of the basis {Ω, δiΩ},
writing

γ =
1

2

(
e−

1

4
πixI∂IΩ + e

1

4
πix̄I ∂̄IΩ̄

)
. (2.36)

where the phase was inserted for later convenience. These coordinates xI on H3(X, R) are

related to the (xi, λ−1) of (2.19) by

1

2
e−

1

4
πixI = λ−1XI + xiDiX

I , (2.37)

where we introduced

DiX
I =

∫

AI

δiΩ = (∂i + ∂iK)XI . (2.38)

The xI are sometimes called “large phase space coordinates”. They give a natural section√∏
I dxI of K 1

2 ; we will write ΨV with respect to this trivialization.

The symplectic form on H3(X, R) becomes in these coordinates

ω =
i

2
[Im τ ]IJ dxI ∧ dx̄J . (2.39)

This leads, upon quantization, to the commutators
[
x̂I , ̂̄xJ

]
= −2[Im τ ]IJ . (2.40)
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Since the change of variable (2.37) is holomorphic (at fixed X), the wave function ΨV in

the xI variables is just obtained by direct substitution of the coordinate change into the old

wave function, with no Bogoliubov transformation required. In other words, the coherent

states (t,t̄)〈x, λ| which diagonalize λ̂ and x̂i also diagonalize x̂I . Then substituting in (2.26)

gives directly

〈xI |x̂I = 〈xI |xI , 〈xI |̂̄xJ = 2[Im τ ]JK ∂

∂xK
〈xI |. (2.41)

Similarly, substituting in (2.28) gives

〈xI | = X〈Ω| exp

[
1

2
xI [Im τ ]IJ

̂̄xJ

]
. (2.42)

Here X〈Ω| is the same vacuum that appeared in (2.28), which is annihilated by x̂I .5 Thus

the overlap formula for ΨV, (2.29), may be rewritten as

ΨV(XI , X̄I ;xI) = X〈Ω| exp

[
1

2
xI [Im τ ]IJ

̂̄xJ

]
|Ψ〉. (2.43)

Using

ωnv+1 = det[Im τ ] dxIdx̄I = |g| e−(nv+1)K dxi dx̄ī dλ−1 dλ̄−1 (2.44)

and

det[Im τ ] = |g| e−(nv+1)K , (2.45)

the inner product (2.18) becomes

〈Ψ′|Ψ〉 =

∫
dxI dx̄I

√
det[Im τ ] e−

1

2
xI [Im τ ]IJ x̄J

Ψ
′∗
V(x̄I)ΨV(xI). (2.46)

Finally, the anomaly equations (2.15), (2.16) become [8, 17]

[
∂

∂X̄I
+

i

2
C̄JK

I

∂2

∂xJ∂xK

]
ΨV = 0, (2.47)

[
∂

∂XI
− 1

2

∂

∂XI
log det[Im τ ] +

i

2
CK

IJxJ ∂

∂xK
+

i

8
CIJKxJxK

]
ΨV = 0, (2.48)

where the indices are raised and lowered with the metric [Im τ ]IJ and its inverse [Im τ ]IJ .

2.5 The real polarized topological amplitude

An obvious nuisance in representing |Ψ〉 in the holomorphic polarizations given by Jt is

the dependence on the basepoint t ∈ M, which as we have reviewed is responsible for the

holomorphic anomaly equations. An alternative (emphasized in [8]) is to consider instead a

real polarization, based on the decomposition of γ ∈ H3(X, R) with respect to a symplectic

basis (AI , BI) of H3(X, R), with dual basis (αI , β
I):

γ = pIαI + qIβ
I . (2.49)

5We are suppressing the X̄ dependence of X〈Ω| to lighten the notation.
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This gives coordinates (pI , qI) on H3(X, R) which do not require a choice of t; we have

traded that dependence for the dependence on the chosen symplectic basis. The relation

between the decomposition (2.49) and the one considered above in (2.36) is

pI = Re(xI), qI = Re(τIJxJ); (2.50)

so upon quantization, pI and qI should become Hermitian operators, with

p̂I = Re(x̂I), q̂I = Re(τIJ x̂J), (2.51)

while the symplectic form ω = dqI ∧ dpI gives

[p̂I , q̂J ] = iδI
J . (2.52)

So now we can introduce coherent states |pI〉 with

p̂I |pI〉 = pI |pI〉, q̂I |pJ〉 = i
∂

∂pI
|pJ〉, (2.53)

normalized to obey the completeness relation

∫
dpI |pI〉〈pI | = 1. (2.54)

If we write |Ω〉
R

= |pI = 0〉, then the coherent states can be constructed from |Ω〉
R

by

|pI〉 = exp(−ipI q̂I)|Ω〉
R
. (2.55)

Using these coherent states one can represent |Ψ〉 in a real polarization:

ΨR(pI) = 〈pI |Ψ〉. (2.56)

This ΨR is related to ΨV(pI ;X, X̄ ;x) = 〈xI |Ψ〉 by a Bogoliubov transformation,

ΨV(X, X̄ ;x) =

∫
dpI

(XI ,X̄I)〈xI |pI〉ΨR(pI). (2.57)

To write this transformation explicitly we need to determine the intertwining function

(XI ,X̄I )〈xI |pI〉. This is the holomorphically polarized form of the state |pI〉, so we call it

ΨV(pI ;X, X̄ ;x). Substituting the expressions (2.42), (2.55) for the coherent states, we have

ΨV(pI ;X, X̄ ;x) = X〈Ω| exp

(
1

2
xJ [Im τ ]JK

̂̄xK

)
exp

(
−ipI q̂I

)
|Ω〉R. (2.58)

Then using ̂̄xI = 2p̂I − x̂I , q̂I = τ̄IJ p̂J + i[Im τ ]IJ x̂I and commuting the operators x̂I , p̂J

(such that [x̂I , p̂J ] = − Im τ IJ) to annihilate the vacua at the two ends gives

ΨV(pI ;X, X̄ ;x) = (X〈Ω|Ω〉R) exp

[
− i

2
pI τ̄IJpJ + pI [Im τ ]IJxJ − 1

4
xI [Im τ ]IJxJ

]
. (2.59)
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The normalization factor X〈Ω|Ω〉R can be determined (up to an unimportant overall con-

stant) by requiring that ΨV(pI ;X, X̄ ;x) obeys the equations (2.47), (2.48): it turns out to

be
√

det[Im τ ], so altogether6

ΨV(pI ;X, X̄ ;x) =
√

det[Im τ ] exp

[
− i

2
pI τ̄IJpJ + pI [Im τ ]IJxJ − 1

4
xI [Im τ ]IJxJ

]
.

(2.60)

In appendix A, we discuss how the real polarization relates to the “holomorphic ambigui-

ties” which appear in [5, section 7].

We close with one comment. Above we have emphasized that the real polarization

involves the choice of a symplectic basis of 3-cycles (symplectic marking). As usual in

quantum mechanics, the wave functions ΨR, ΨR′ in two different symplectic bases differ by

a Bogoliubov transformation: e.g. under BI → BI + mIJAJ , ΨR transforms by

ΨR′(pI) = eipImIJ pJ

ΨR(pI), (2.61)

and under an exchange AI ↔ BI ,

ΨR′(qI) =

∫
dpIeipIqIΨR(pI). (2.62)

There is a small subtlety here: it turns out that in order to fix some sign ambiguities in

the Bogoliubov transformations one needs to consider the wave function as a half-density.

So it is ΨR(pI)
√

|∏ dpI | that is actually well defined [18]. This is another aspect of the

metaplectic correction which we mentioned in section 2.3.

2.6 The (anti)holomorphic topological amplitude

So far we have mainly reviewed forms of the topological string partition function already

found in the literature. In the next two subsections we introduce two new variants.

We begin with the holomorphically polarized topological amplitude (2.43),

ΨV(XI , X̄I ;xI) = X〈Ω| exp

[
1

2
xI [Im τ ]IJ

̂̄xJ

]
|Ψ〉. (2.63)

As we have discussed, this ΨV is a section of the holomorphic line bundle K 1

2 over the com-

plex manifold M̃, the total space of H3
+ over M. It obeys holomorphic anomaly equations

which are close to, but not identical to, those satisfied by the complex conjugate of a theta

function. The obvious difference is that a theta function θ(t, z) is purely holomorphic both

in t and in z. So we want to make some transformation so that ΨV will become purely

antiholomorphic.

To do so, we need to overcome three obstacles, two of which are apparent even without

looking at the detailed form of the anomaly equations. First, K 1

2 is a holomorphic line

bundle over M̃, so there is no well defined notion of an antiholomorphic section. Second,

ΨV depends holomorphically rather than antiholomorphically on the fiber coordinates xI .

6This function was first obtained in [17], by factorizing the semiclassical partition function of the NS5-

brane wrapped on X.
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Both of these problems can be solved using the Hermitian metric in H3
+ (which in our

coordinates is [Im τ ]IJ .) First, using this metric one can identify K 1

2 ' K̄− 1

2 , so that we

will have a section of an antiholomorphic line bundle instead of a holomorphic one. In

our coordinates and local trivialization this just means dividing by
√

det[Im τ ]. Second,

one can also identify the total space of H3
+ with that of (H̄3

+)∗ = (H3
−)∗, thus reversing

the complex structure on the fibers, so that ΨV will be antiholomorphic on them. This

amounts to the change of coordinate xI = [Im τ ]IJ ȳJ .

Making these transformations in (2.63) leads to the function

X〈Ωah| exp

[
1

2
ȳJ

̂̄xJ

]
|Ψ〉. (2.64)

Here we have rescaled 〈Ω| =
√

det[Im τ ]〈Ωah|. Still, (2.64) cannot be antiholomorphic in

X: the trouble now is with the annihilation operator ̂̄xJ , which we recall depends implicitly

on X. But since x̂J annihilates 〈Ωah| one may replace ̂̄xJ by x̂J + ̂̄xJ = 2p̂J , at the expense

of introducing an extra phase from the Baker-Campbell-Hausdorff formula in commuting

x̂J past ̂̄xJ :

X〈Ωah| exp
[
ȳJ p̂J

]
|Ψ〉 = exp

(
1

4
xI [Im τ ]IJxJ

)
X〈Ωah| exp

[
1

2
ȳJ

̂̄xJ

]
|Ψ〉. (2.65)

The left side of (2.65) is our candidate for the antiholomorphic version of the topological

amplitude:

Ψah(XI , X̄I ; ȳI) = X〈Ωah| exp
[
ȳI p̂I

]
|Ψ〉. (2.66)

In terms of the original ΨV, we can summarize our transformation as

Ψah(X
I , X̄I ; ȳI) =

exp
(

1
4xI [Im τ ]IJxJ

)
√

det[Im τ ]
ΨV(XI , X̄I ;xJ). (2.67)

Now we want to see what sort of anomaly equations Ψah obeys. The simplest way to work

this out is to apply the transformation (2.67) to the explicit solutions (2.60) giving the

intertwiner to the real polarization: they become

Ψah(p
I ;X, X̄ ; ȳI) = exp

[
− i

2
pI τ̄IJpJ + pI ȳI

]
. (2.68)

To avoid the nuisance of working with antiholomorphic objects, from now on we use the

holomorphic Ψhol = Ψ∗
ah, a section of K− 1

2 . Then in terms of Ψhol, the anomaly equations

take the simplified form7

[
∂

∂XI
− i

2
CIJK

∂2

∂yJ∂yK

]
Ψhol = 0, (2.69)

∂

∂XI
Ψhol = 0. (2.70)

7Note that (2.69), (2.70) could be summarized as δΨhol = i

2
δτJK∂yJ

∂yK
Ψhol, which is formally identical

to the heat equation giving the variation of a holomorphic Siegel theta function Θ(τ, y) with τ . Indeed Ψhol

behaves very much like a Siegel theta function, except that τ is not allowed to vary arbitrarily, and worse

yet Im τ is not positive definite, so the usual construction of holomorphic Siegel theta functions would lead

to a divergent series.
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The inner product (2.46) of wave functions becomes

〈Ψ′|Ψ〉 =

∫
dyI dȳI

√
det[Im τ ] e−

1

2
(yI+ȳI)[Im τ−1]IJ(yJ +ȳJ)Ψ

′

hol(X, X̄ ; yI)Ψhol(X, X̄ ; yI).

(2.71)

2.7 The generalized heat equation

For comparison to the results we will find in section 3 we will make one further transfor-

mation of the partition function. This transformation can be made only after choosing a

privileged element A0 in H3(X, R), with corresponding period
∫
A0 Ω = X0. Having done

so, one may define coordinates on M by

ti =
Xi

X0
. (2.72)

Now we make a small further adjustment: we divide the coordinates yI into {y0, yi}, and

then replace y0 by

w = y0 + tiyi. (2.73)

(This shift will find a natural interpretation in section 3.5.) Considering Ψhol as a function

of (ti, yi, w), (2.69), (2.70) then become

[
∂

∂ti
− i

2
Cijk

∂2

∂yj∂yk
+ yi

∂

∂w

]
Ψhol = 0, (2.74)

∂

∂t̄i
Ψhol = 0. (2.75)

This is not too hard to check using the relation XICIJK = 0, which follows from the defini-

tion (2.35) and the homogeneity of F , and which in these coordinates implies pJpKCiJK =

(pj − p0tj)(pk − p0tk)Cijk.

Altogether then, we have found that the complex conjugate of the BCOV topological

string amplitude can be transformed into a strictly holomorphic function Ψhol, obeying a

heat equation analogous to that of the Jacobi theta series. To be precise, we gave two

closely related versions of this heat equation, namely (2.69) and (2.74).

The existence of such a heat equation is not unexpected: indeed, it was the similarity

between the anomaly equation of [6] and the heat equation that led Witten to propose the

wave function interpretation of the topological string partition function. This interpretation

was natural particularly in light of the earlier work [20], in which the heat equation for

(abelian and non-abelian) theta functions was identified as a “background dependence” in

the quantization of the moduli space of flat connections on a Riemann surface, coming from

the need to choose a complex structure. However, the analogy has always been slightly

puzzling: if the topological string partition function arose in this way one would expect

it to be purely holomorphic, as was the case for the theta functions of [20]. We view the

transformations relating Ψ∗
BCOV to Ψhol, given above, as the resolution of this small puzzle:

in summary, Ψ∗
BCOV can be made holomorphic by choosing the proper complex structure on

its domain, and by choosing a different convention for the genus zero 0,1,2-point functions

than was chosen in [6].
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In section 3, we will give a representation-theoretic construction of the anomaly equa-

tions for Ψhol, exhibiting its wave function nature directly, in cases where M is a symmetric

space.

2.8 Modularity

So far we have considered the topological string partition function on the Teichmüller space

M and its extension to M̃. In the string theory, though, the relevant space is generally

not M but some quotient Γ\M, where Γ is a “modular group” of large biholomorphisms

of X. So we should ask how the topological string partition function transforms under Γ.

For the original partition function ΨBCOV the answer is simple. Since ΨBCOV is defined

directly in terms of the B model topological string theory, which appears to be Γ-invariant,

ΨBCOV should also be Γ-invariant. However, we must be careful about what this means,

since ΨBCOV is a section of L1− χ

24 . So to be precise, the action of Γ on X induces holomor-

phic actions on M, T and L, and we expect that ΨBCOV is invariant under the combined

action. For the modified partition function ΨV the story is similar, except that ΨV is a

section of K 1

2 instead of L1− χ

24 .

If we choose some specific coordinates on H3(X, C) and trivialization of K 1

2 , then we

can be more concrete. For example, suppose we choose the coordinates xI and trivialization

of K 1

2 by the half-form
√∏

I dxI , as in section 2.4. An element γ ∈ Γ acts on H3(X, C) by

some element in Sp(2nv + 2, Z), which we also write as γ: in a basis where the symplectic

form is the block-diagonal
(

0 1
−1 0

)
, write

γ =

(
AI

J BIJ

CIJ DI
J

)
. (2.76)

Based on the above we expect that ΨV(t, x)
√∏

I dxI should be invariant under the action

of γ. This leads to the transformation law

(det[Cτ + D])
1

2 ΨV (γt, (Cτ + D)x) = ΨV(t, x). (2.77)

The point γt can be characterized by the fact that the period matrix τIJ transforms as

γτ = (Aτ + B)(Cτ + D)−1.

Now what about Ψhol? The transformation (2.67) relating ΨV to Ψ∗
hol introduces

extra factors which depend explicitly on the choice of a symplectic basis. With these

factors included, the transformation law (2.77) is modified to

(det[Cτ + D])−
1

2 Ψhol

(
γt, (Cτ + D)−1y

)
= exp

(
− i

2
yI [(Cτ + D)−1]IJCJKyK

)
Ψhol(t, y),

(2.78)

just as for the Riemann theta series [21].

This modular property in principle gives strong constraints on Ψhol. One concrete

way to extract these constraints would be to make a perturbative expansion of log Ψhol.

At each genus we would then expect to find a holomorphic section of a holomorphic line

bundle over Γ\M. If Γ\M can be compactified while keeping control of the behavior near
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the boundary points, then such a line bundle has a finite-dimensional space of holomorphic

sections; in other words, Ψhol is determined up to a finite-dimensional ambiguity at each

genus. This seems to be consistent with the results of [15, 16], who have recently studied

the constraints modular invariance and the anomaly equation impose on topological string

perturbation theory.

3. The holomorphic anomaly for symmetric tube domains

Now we consider a special class of N = 2, d = 4 supergravity theories coupled to vector

multiplets. These theories are constructed from Euclidean Jordan algebras J with invariant

cubic norms, and can be obtained by dimensional reduction from corresponding theories

in five dimensions, which were constructed in [22 – 24]. In the five-dimensional description,

the vector fields are in 1-1 correspondence with basis elements of J . After dimensional

reduction this correspondence is extended: both electric and magnetic field strengths get

related to basis elements of the “Freudenthal triple system” defined over J [25 – 29].

Given J we review the construction of this Freudenthal triple system as well as a

special Kähler manifold M, which is the vector multiplet moduli space of the corresponding

d = 4 supergravity theory, and a global symmetry group G which acts transitively on M
by isometries. M is equipped with a privileged set of special coordinates, in which the

prepotential is directly related to the cubic norm of J .

Most of these supergravity theories are not known to arise as low energy limits of Type

II string theory compactified on a Calabi-Yau threefold. One notable exception comes from

Type II string theory compactified on a quotient of K3×T 2, considered in [30] and recently

reinvestigated in [31, 32]. The vector multiplet moduli space of this theory has a classical

SO(10, 2)×SU(1, 1) symmetry acting transitively. A priori this symmetry could be broken

by genus zero worldsheet instantons, but it turns out that these instantons are absent, so

the exact special geometry of the moduli space is SO(10, 2)×SU(1, 1) symmetric. Indeed,

this model gives a string theory realization of one of the generic Jordan family of N = 2

Maxwell-Einstein supergravity theories, with n = 11 vector multiplets (the first row of

Figure 1 below), coupled to 12 hypermultiplets.

It would be interesting to have more examples of magical supergravity theories which

can be embedded into string theory. In fact, several candidate theories can be found in [33],

among them a model which at low energy describes the coupling of 15 vector multiplets

to N = 2 supergravity. It is easy to show that, at least before considering worldsheet

instantons, this is the “magical” supergravity theory with moduli space SO∗(12)/(SU(6)×
U(1)) (the fifth row in Figure 1). It is not known whether the SO∗(12) symmetry of this

moduli space survives into the quantum theory.

In any case, the holomorphic anomaly equation can be constructed from an N = 2,

d = 4 supergravity theory without reference to its embedding into string theory. From now

on we adopt this point of view.
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3.1 The phase space

We begin with a Euclidean Jordan algebra J , of real dimension nv.
8 We assume that J

admits a cubic norm N , which may be written concretely in linear coordinates

N(p) =
1

6
Cijkp

ipjpk. (3.1)

From J one can construct an associated “Freudenthal triple system” (see e.g. [35 – 41]);

this is a real vector space V which decomposes as

V = R ⊕ J ⊕ J ⊕ R. (3.2)

We choose linear coordinates p0, pi, qi, q0 respectively on the four summands (using the

Jordan algebra trace to pair the two copies of J). We also introduce the index I = (0, i).

Then V is equipped with a natural symplectic form ω,

ω = dp0 ∧ dq0 + dpi ∧ dqi = dpI ∧ dqI , (3.3)

and a quartic form constructed from the norm on J ,

I4 = 4p0N(qi) − 4q0N(pi) + 4qi
] p]

i − (p0q0 + piqi)
2. (3.4)

where p]
i := 1

2Cijkp
jpk, qi

] := 1
2Cijkqjqk. We define G as the group of linear transformations

of V which preserve ω and I4; this G shows up as a global symmetry of the supergravity

theory, and in particular it acts by isometries on the moduli space M as we will see below.

There is a particularly important generator D ∈ g which recovers the real decomposi-

tion (3.2), acting with eigenvalues −3, −1, +1, +3 respectively on the four summands. It

also induces a decomposition of g into real subspaces

g = g− ⊕ g0 ⊕ g+ (3.5)

where g−, g0, g+ have eigenvalues −2, 0, 2 respectively. The three subspaces can be

conveniently described in terms of J . Namely, g0 is the “structure algebra” of J , consisting

of infinitesimal linear transformations of J preserving N up to overall rescaling; these act

on V in the obvious way. g− and g+ are isomorphic as vector spaces to J ; we write the

generators as Si and T i respectively, and then define Rj
i = [Si, T

j ]. The trace of R gives

the abovementioned D, as D = 3
nv

Ri
i; we also define the traceless part Di

j = Ri
j − 1

3D.

3.2 The Teichmüller space

Next we need to describe the Teichmüller space M. As we mentioned above, this space has

been studied extensively in the physics literature [22, 23, 42 – 46]; for a more mathematical

review and pointers to the mathematical literature see e.g. the book [47]. Here we present a

construction of M described in [48], which is tailored to our needs: it mimics the procedure

8A review of the relevant aspects of Jordan algebras can be found in [23, 34]; in what follows we will

not need to know much about their algebraic structure.
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of section 2.4, where the Teichmüller space of a Calabi-Yau threefold X was realized as the

projectivization of a Lagrangian cone M̂ inside the complexified phase space H3(X, C).

In our current setup V is playing the role of H3(X, R). So we should begin by com-

plexifying the phase space V to VC. Then the action of G on V extends holomorphically

to an action of a complexified group GC on VC. Inside VC, we consider the orbit O of

the “lowest weight” vector (p0, pi, qi, q0) = (1, 0, 0, 0). From the fact that any element of

gC only changes the D-grading by 0 or ±2, it follows that O is a Lagrangian cone; the

projectivization of O is a compact manifold which we call MD. This is almost, but not

quite, the desired M: indeed, by construction MD is a single orbit of GC, but under the

action of the real group G ⊂ GC it has a further decomposition into orbits. The desired M
is a “big” orbit (open in MD) for which the stabilizer of any point is a maximal compact

subgroup of G. By construction, then, M ' G/K with K a maximal compact subgroup

of G. Similarly we can write MD as GC/P with P the stabilizer of (1, 0, 0, 0). It will be

useful below to remember that M is embedded into MD.9 In particular, this embedding

immediately shows that M has a complex structure on which G acts by holomorphic au-

tomorphisms. Moreover, it gives a natural notion of analytic continuation to the boundary

of M.

This construction of M inside P(VC) gives a nice class of homogeneous coordinate

systems on M, coming from symplectic markings of V , just as we discussed in section 2.4

for symplectic markings of H3(X, R). Actually, in this case the situation is even better: the

decomposition (3.2) of V gives a natural symplectic marking of V , which turns out to give

an especially convenient projective coordinate system XI . The prepotential F (defined as

the function which generates the Lagrangian cone in these coordinates, as in section 2.4)

then turns out to be purely cubic,

F =
N(Xi)

X0
. (3.6)

The decomposition (3.2) also gives a natural 1-dimensional subspace (hence a natural choice

of the 0-th direction), which one can use to define honest coordinates on M,

ti =
Xi

X0
. (3.7)

For example, taking the Jordan algebra J = R, the above construction gives M as the

upper half-plane with its standard coordinate t = x + iy. More generally, the coordinates

ti = xi + iyi realize M as a “generalized (Köcher) upper half-plane” inside JC, of the

9To make this embedding M ⊂ MD seem more familiar, we recall a closely related example. Consider

GC = SL(2, C) acting on VC = C
2. Then the orbit O of the vector (0, 1) is C

2 minus the origin. Pro-

jectivizing gives the Riemann sphere CP
1 as MD. Then letting SL(2, C) act on the Riemann sphere by

linear fractional transformations, the stabilizer P of the south pole consists of lower-triangular matrices;

so MD is SL(2, C)/P . On the other hand, if one considers just the action of SL(2, R), then MD breaks

up into orbits, namely the two hemispheres and the equator. On either the top or bottom hemisphere, the

stabilizer in SL(2, R) of a point is U(1); we call the top hemisphere M. So the standard realization of the

upper half plane M as SL(2, R)/U(1) is naturally embedded inside the realization of the Riemann sphere

MD as SL(2, C)/P .
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J G K V nv

R ⊕ Γn−1,1 SU(1, 1) × SO(2, n) U(1) × U(1) × SO(n) (2,n + 2) n + 1

R SL(2, R) U(1) 4 1

Herm3(R) Sp(6, R) U(1) × SU(3) 14 6

Herm3(C) SU(3, 3) U(1) × SU(3) × SU(3) 20 9

Herm3(H) SO∗(12) U(1) × SU(6) 32 15

Herm3(O) E7(−25) U(1) × E6 56 27

Table 1: Euclidean Jordan algebras of degree 3 and their corresponding G, K, V and nv. The

groups G, K are given only up to a finite cover or finite quotient. Herm3 denotes 3 × 3 Hermitian

matrices; Γn−1,1 is a Jordan algebra of degree 2 defined by a quadratic form of Lorentzian signature

[23].

form [23]

M = {t = x + iy : x ∈ J, y ∈ J+} ⊂ JC, (3.8)

where J+ is the cone of “positive definite” elements in J , with boundary contained in the

“cubic light-cone” {y : N(y) = 0}. M also has a natural Kähler metric inherited from VC,

with the simple Kähler potential

K(ti, t̄ī) = − log N(ti − t̄ī). (3.9)

In these coordinates, the action of G on M can be described simply, e.g. because it comes

from the linear action on VC: one finds that the generators Ti, Ri
j , Si act respectively by

translations, Lorentz rotations/dilatations and “special conformal” transformations [49],

Ti 7→
∂

∂ti
, Ri

j 7→ −Λik
jl t

l ∂

∂tk
, Si 7→ 1

2
Λij

klt
ktl

∂

∂tj
, (3.10)

where Λij
kl = δi

kδ
j
l + δj

kδ
i
l − CklmCijm.10 Here we introduced Cijk, where the indices are

raised using the metric on M; this actually gives a constant tensor, numerically equal to

Cijk up to an overall constant, which can be shown using the fact that both Cijk and Cijk

descend from invariant tensors in the five-dimensional supergravity theory [24].

Note that the action of G preserves the condition that all ti are real. So G can be

thought of as a “generalized conformal group” Conf(J) which acts on the Jordan algebra

J , as well as on M ⊂ JC [49]. (This generalizes the fact that SL(2, R) acts on R as well

as on the upper half-plane.) The action of G on J preserves separations along the cubic

light-cone, i.e. N(x − x′) = 0 =⇒ N(gx − gx′) = 0.

Now we have finished constructing the phase space V , the Teichmüller space M, and

the group G, which we have seen acts naturally both on V (by linear maps) and on M (by

holomorphic automorphisms). In Figure 1 we tabulate the Euclidean Jordan algebras of

degree 3 and their corresponding G, K, V and nv.

10Our C differs from that of GST [23] by a factor 2/
√

3, Chere
ijk = 2√

3
CGST

ijk , to agree with the conventions

used in the special geometry literature.
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3.3 Quantization of phase space: the Heisenberg group

Following the discussion of section 2, we now want to understand the topological string

partition function in these models as a state |Ψ〉 in the quantization of V . This quantization

as usual gives a Hilbert space H~ acted on by operators corresponding to the coordinates

{pI , qI} ∈ V ∗. These operators together with a single central generator Z generate a

Heisenberg group H, with the standard commutation relations11

[ip̂I , iq̂J ] = −δI
JZ, (3.11)

where Z acts on H~ by a pure imaginary scalar i~. In what follows we will always set

~ = 1; this choice is consistent with section 2 where we used the commutation relations

[p̂I , q̂J ] = iδI
J .

To construct a “topological string partition function” obeying the holomorphic anoma-

ly equations from the abstract state |Ψ〉, we want to introduce a basis of coherent states for

each point t ∈ M. Hence we need to define a complex structure Jt on V . We define it as

in section 2.3, in terms of a Hodge decomposition. Recall that D gave a real decomposition

of V , shown in (3.2). More generally, its conjugate Dt = (Ad(exp tiTi))D gives a conjugate

decomposition

VC = V3 ⊕ V1 ⊕ V−1 ⊕ V−3 (3.12)

where for complex t the eigenspaces are not invariant under conjugation. This is our desired

Hodge decomposition at the point t ∈ MD, from which Jt can be constructed as in section

2.3. This Hodge decomposition has been discussed previously in [50].

3.4 The Schrödinger-Weil representation

So far we have discussed the action of the Heisenberg group H on the Hilbert space H~.

In the present case there is another natural group around, namely G, which acts on V

by symplectic transformations. The symplectic transformations induce an action on H~:

g ∈ G gives a Bogoliubov transformation B(g), satisfying the condition12

B(g)f̂B(g)−1 = ĝf . (3.13)

The requirement (3.13), together with unitarity, is enough to determine B(g) up to a phase

ambiguity. In particular, it implies that B(g)B(g′) = eiθ(g,g′)B(gg′). One can then try to

choose the ambiguous phases in such a way that B(g)B(g′) = B(gg′). This is not possible

in general, but one can always manage it by passing to a “metaplectic” covering group of

G; in what follows we will implicitly replace G by this cover when necessary.

11We write the commutation relations for ibp and ibq rather than bp and bq because we want to deal with the

skew-Hermitian generators of the real group H .
12The existence of some B(g) satisfying (3.13) can be abstractly proven by the following standard argu-

ment: for a fixed g, we consider two different actions of H on H~ , one by if 7→ i bf , the other by if 7→ icgf .

Because g preserves the symplectic structure, these are both representations of H , with the same central

character Z 7→ i~. Hence the Stone-von Neumann Theorem guarantees that they are equivalent, so the

desired B(g) exists.
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−3 −2 −1 0 1 2 3

2 Z

1 iq̂0 iq̂i ip̂i ip̂0

0 Si Ri
j ,D Ti

Table 2: A list of the generators of the Lie algebra g̃, with two gradings, by D (horizontal) and

by ∆ (vertical).

So we have actions of G and H on the Hilbert space H~, with the commutation

between the two determined by (3.13); hence we can think of H~ as a representation of an

extended group G̃ = GnH. Following [10] we call it the “Schrödinger-Weil representation”.

At least formally, it has a natural extension to a representation of a complexified group

G̃C = GC n HC, acting holomorphically on H~; in the construction of the topological

amplitude below, we work formally with the complexified generators.

Let us describe G̃ in a bit more detail. The Lie algebra g̃ has a decomposition which

naturally extends (3.5): in addition to the grading by the dilatation generator D which

runs from −3 to 3, there is a second grading ∆ (not implemented by any element of g̃, but

see section 3.8) under which g has grade 0, V ∗ grade 1, and Z grade 2. We represent the

two gradings in Figure 2. Moreover, we can realize the Schrödinger-Weil representation H~

(with ~ = 1) concretely in the real polarization given by our chosen symplectic marking:

then H~ just consists of L2 functions of the nv + 1 real variables pI , and the generators of

g̃ act by

Z 7→ i, (3.14)

iq̂0 7→ ∂

∂p0
, iq̂i 7→

∂

∂pi
, ip̂i 7→ ipi, ip̂0 7→ ip0, (3.15)

Si 7→ − i

2
Cijk ∂2

∂pj∂pk
+ pi ∂

∂p0
, Ti 7→ +

i

2
Cijkp

jpk − p0 ∂

∂pi
, (3.16)

Rj
i 7→ δj

i p
0 ∂

∂p0
− pj ∂

∂pi
+

1

2
CiklC

jnl

(
pk ∂

∂pn
+

∂

∂pn
pk

)
. (3.17)

Now we recall that C, constructed from the norm of the Jordan algebra J in (3.1), satisfies

a crucial “adjoint identity” [23] which implies

CiklC
inl =

(nv

3
+ 1

)
δn
k . (3.18)

Then defining D = 3
nv

Ri
i and using (3.17) we find

D 7→ 3p0 ∂

∂p0
+ pi ∂

∂pi
+

1

2
(nv + 3). (3.19)

For later use, we note a few facts which can be easily checked using this explicit realization.

First, we introduce a state |Ω〉0 defined by the constant function f(p) = 1.13 This state

is annihilated by the generators q̂I ; these generators are not the annihilation operators of

13This |Ω〉
0

is not normalizable, so it does not strictly speaking belong to H~ .
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any holomorphic polarization, but it turns out that they arise as the t = 0 limit of the

annihilation operators of Jt, so we can sensibly refer to |Ω〉0 as a “vacuum at t = 0.” Now

we note that |Ω〉0 is also annihilated by Si and Di
j , and has eigenvalue 1

2 (nv + 3) under D.

Second, we note that the operator equation

ZTi +
1

2
Cijkp̂j p̂k − p̂0q̂i = 0 (3.20)

holds in the Schrödinger-Weil representation. In the next section we will identify (3.20)

with the holomorphic anomaly equation.

3.5 The anomaly equations

In this section we will argue that Ψhol, when considered as a function of both t and y, has

a natural interpretation as a matrix element of the Schrödinger-Weil representation, and

that if one adopts this point of view from the outset, the anomaly equations arise naturally

from the operator equations (3.20).

First recall from (2.66) that for fixed t ∈ M, Ψhol(t, y) can be understood as a matrix

element of H acting on the Hilbert space H~, between |Ψ〉 and a vacuum |Ω〉t in the Jt

polarization:

Ψhol(t, y) = 〈Ψ| exp(yI p̂I)|Ω〉t. (3.21)

On the other hand, as we have just seen, the Bogoliubov transformations which relate

the vacua in various polarizations can be implemented by the group GC acting in the

Schrödinger-Weil representation. In particular, vacua in the Jt polarization are related to

those in the Jt′ polarization by the action of any g ∈ GC which maps t to t′ in M. Now

recall that |Ω〉0 is a vacuum in the polarization at t = 0 and that Ti act by translations on

MD, so exp
(
tiTi

)
maps t = 0 to t. With this in mind, we write

|Ω〉t = exp
(
tiTi

)
|Ω〉0. (3.22)

Since |Ω〉0 is annihilated by the special conformal generators Si and transforms irreducibly

under the “Lorentz” generators Ri with definite scale dimension under D, one can think

of Ψhol as a generalized conformal wave function associated with a unitary representation

of G in the sense of [51].

One could ask whether (3.22) actually defines the same vacuum that appears in (3.21).

After all, the vacuum is only determined up to rescaling, so a priori the choice (3.22) could

differ by a function of (t, t̄) from the one that should appear in (3.21). We will verify that

(3.22) is the correct choice by showing that

Ψhol(t
i, yI) = 〈Ψ| exp(yI p̂I) exp

(
tiTi

)
|Ω〉0 (3.23)

obeys exactly the holomorphic anomaly equations (2.69), (2.70) (which would certainly

be spoiled if one multiplied Ψhol by some non-constant function of (t, t̄).) Indeed, taking

(3.23) as the definition of Ψhol, the holomorphic anomaly equations follow directly from

facts about the Schrödinger-Weil representation of G̃, as we now show.
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It is convenient to begin by reversing the order of the operators that appear in (3.23).

Using [p̂j , Ti] = δj
i p̂

0 and [p̂0, Ti] = 0, (3.23) becomes

Ψhol(t
i, yI) = 〈Ψ| exp

(
tiTi

)
exp

(
yip̂i + (y0 + tiyi)p̂0

)
|Ω〉0. (3.24)

So setting w = y0 + tiyi,

Ψhol(t
i, yi, w) = 〈Ψ| exp

(
tiTi

)
exp

(
yip̂i + wp̂0

)
|Ω〉0. (3.25)

Note that this shift from y0 to w is exactly the one made in (2.73), which converted the

anomaly equations (2.69), (2.70) to their shifted variants (2.74), (2.75). We will now verify

that (3.25) satisfies (2.74), (2.75), which we reproduce for convenience:

[
∂

∂ti
− i

2
Cijk

∂2

∂yj∂yk
+ yi

∂

∂w

]
Ψhol = 0, (3.26)

∂

∂t̄i
Ψhol = 0. (3.27)

The second anomaly equation (3.27) just says Ψhol is holomorphic in ti; this is manifest

from (3.23), since G̃C acts holomorphically. To establish the first anomaly equation (3.26)

we use the operator equation (3.20) which holds in the Schrödinger-Weil representation.

Inserting this operator into the right side of (3.24) gives

〈Ψ| exp
(
tjTj

)(
ZTi +

1

2
Cijkp̂j p̂k − p̂0q̂i

)
exp

(
yj p̂j + wp̂0

)
|Ω〉0 = 0. (3.28)

The q̂i operator annihilates |Ω〉0; commuting it through exp yip̂i gives a commutator

[q̂i, yip̂i] = −yiZ. Also, recall that Z acts as the scalar i~ = i. Altogether (3.28) becomes

〈Ψ| exp
(
tjTj

)(
iTi +

1

2
Cijkp̂j p̂k + ip̂0yi

)
exp

(
yj p̂j + wp̂0

)
|Ω〉0 = 0, (3.29)

which is simply [
i

∂

∂ti
+

1

2
Cijk

∂2

∂yj∂yk
+ iyi

∂

∂w

]
Ψhol = 0. (3.30)

This is our desired anomaly equation (3.26).

3.6 Geometry of the matrix elements

In the last section we realized Ψhol as a matrix element for the group G̃, or more precisely

its complexification G̃C. We now make a few extra comments about this construction, to

elucidate its geometric nature. In particular, we will explain how the metaplectic correction

we discussed in section 2.3 arises here as a “zero point energy” of the vacuum |Ω〉0. We

will also see that the wave function is naturally considered as a section of a prequantum

line bundle, as usual in geometric quantization.

We begin by noting that our construction (3.23) has the general form

Ψhol(t, y) = 〈Ψ|gt,y|Ω〉0 (3.31)
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where gt,y is an element in G̃C depending holomorphically on (t, y). It is natural then to

consider Ψhol simply as a function on G̃C,

Ψhol(g) = 〈Ψ|g|Ω〉0. (3.32)

One might think that this function contains more information than did Ψhol(t, y), since

the number of variables in g is more than in (t, y). However, Ψhol(g) obeys some extra

constraints, arising from the fact that |Ω〉0 is an eigenvector for some of the generators of

G̃C. First, |Ω〉0 is annihilated by q̂I , Si, and Di
j ; letting P̃ denote the complex group they

generate, this implies immediately that

Ψhol(gp) = Ψhol(g), p ∈ P̃ . (3.33)

Hence Ψhol can be considered as a function on G̃C/P̃ . This agrees well with the interpreta-

tion of Ψhol as a “conformal wave function.” Moreover, under the dilatation generator D,

|Ω〉0 has eigenvalue 1
2(nv +3), and under the central generator Z of H, |Ω〉0 has eigenvalue

i~ = i. This implies that

Ψhol (g exp(λD + ζZ)p) = exp

(
1

2
(nv + 3)λ + iζ

)
Ψhol(g), λ ∈ C, ζ ∈ C, p ∈ P̃ . (3.34)

Thus one can also divide out by the larger complex group Q̃ generated by P̃ , D and Z,

at the cost that we now describe Ψhol(g) as a holomorphic section of a holomorphic line

bundle over G̃C/Q̃, rather than as an honest function. This line bundle is constructed in

a tautological way: the state |Ω〉0 transforms in a 1-dimensional representation of Q̃; call

this representation ρ, and then define

V =
{

(g, z) ∈ G̃C × C

} / [
(g, z) ∼ (gq, ρ(q)z) : q ∈ Q̃

]
. (3.35)

Any Ψhol satisfying (3.34) gives a section of V. So our construction has naturally led to a

section Ψhol of the line bundle V over G̃C/Q̃.

What is the meaning of this quotient of complex groups? Recall from section 3.2

that in defining the moduli space M we first considered a larger space MD which was a

homogeneous space for GC, and then obtained M as an open G-orbit inside MD. Here

we have done something precisely analogous, now for the extended group G̃ instead of G:

letting M̃D denote G̃C/Q̃, we can construct M̃ as an open orbit for the real group G̃. This

M̃ is the exact counterpart of the M̃ which appeared in section 2.2: it is a vector bundle

over M = G/K, with phase-space fibers generated by the action of H. It is equipped with

a natural complex structure inherited from M̃D, which varies along the fibers, and also

inherits the holomorphic line bundle V, of which Ψhol is a section. It can also be written

as a quotient M̃ = G̃/K̃ , where K̃ is the group generated by K ⊂ G and the Heisenberg

center Z (so K̃ is non-compact).

How should we interpret the fact that Ψhol comes out as a section of the holomorphic

line bundle V? In fact, this is exactly what one expects from the point of view of geometric

quantization: the wave functions are sections of the “prequantum line bundle” over the
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phase space. The fact that the central generator Z of the Heisenberg algebra acts nontriv-

ially means that the restriction of Ψhol(t, y) to any fixed t ∈ M is naturally a section of

a line bundle over the phase space. Of course, since the phase space here is just a linear

space, one can suppress the issue by trivializing the line bundle, which is what was done

in section 2. Nevertheless, it is gratifying to see the line bundle coming out naturally here.

Similarly, the fact that the dilatation generator D ∈ g acts nontrivially means that

even after fixing y = 0, Ψhol(t) is still a section of a homogeneous line bundle over M,

characterized by the D-eigenvalue 1
2(nv + 3). This line bundle is exactly the bundle K− 1

2

related to the metaplectic correction to geometric quantization, which we discussed in

section 2.3. To see this, it suffices to note that a holomorphic top-form on V is an element

of ∧top(V ∗
+), and V ∗

+ has nv basis elements with weight 1 and one basis element with weight

3 under Ad(g(t))D, so their wedge product has total weight nv + 3.

To sum up: We have seen that starting from a state |Ψ〉 in the Schrödinger-Weil repre-

sentation of G̃ one can canonically construct a matrix element 〈Ψ|g|Ω〉, which is naturally

considered as a section of a holomorphic line bundle V over a coset space G̃/K̃ . This V is

the line bundle in which a wave function should live: it incorporates the prequantum line

bundle and the metaplectic correction. The formula (3.23) can be understood as defining

a particular trivialization of V, in which the holomorphic anomaly equations of section 2.6

hold.

3.7 Modularity

It is natural to ask what happens if |Ψ〉 is invariant under some discrete group Γ ⊂ G.

The line bundle V over G̃/K̃ defined in the last section has an obvious action of G. So

we can define a quotient bundle over the double coset space Γ\G̃/K̃, and the matrix

element 〈Ψ|g|Ω〉 is then a holomorphic section of that quotient. This is the usual situation

for holomorphic modular forms: they can be understood as sections of holomorphic line

bundles over double coset spaces. The double coset space Γ\G̃/K̃ of interest here is a

vector bundle over Γ\G/K = Γ\M; each fiber is a copy of the linear phase space.

If we work with a specific coordinate system on G̃ and trivialization of V, such as the

ones used in (3.23) to make contact with section 2, then 〈Ψ|g|Ω〉 will be represented by a

holomorphic function, and the Γ-invariance will imply some modular transformation law

for this function. Starting from (3.23), for example, one can derive the transformation

under γ ∈ Γ by considering

Ψhol(t
i, yI) = 〈Ψ|γ exp(yI p̂I) exp

(
tiTi

)
|Ω〉0 (3.36)

and then commuting γ to the right. The result of this procedure is the same modular

transformation law we found in section 2.8 for the topological string partition function. In

other words, the condition that the string theory is invariant under Γ acting by biholo-

morphisms on the Calabi-Yau threefold is equivalent to the condition that the state |Ψ〉 is

invariant under Γ acting in the Schrödinger-Weil representation.

One could go further and ask what happens if Γ also includes a discrete subgroup of

H, for example, the subgroup generated by exp 2πip̂ and exp 2πiq̂. In this case the phase-

space fibers of Γ\G̃/K̃ become tori, varying in a family over the moduli space. Formally
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then, our construction would lead to a theta function, a holomorphic section of V over

this family of tori. However, this cannot be quite right: V actually has no holomorphic

sections over the torus, because its curvature is not positive definite but rather has one

negative eigenvalue; this is a manifestation of the problem we mentioned at the end of

section 2.3.14 From the general theory of geometric quantization one can guess what kind

of “theta function” one could hope for: it should be an element in the sheaf cohomology

H1 of V rather than H0. Such theta functions have not been discussed very much in the

literature, but see e.g. [52, 53]. It would be interesting to understand the relation between

our formal construction (which seems to agree with the topological string) and this sheaf

cohomology. Of course, a priori there is no reason why the topological string should be

invariant under any subgroup of H; we discuss this further in section 4.

3.8 Fourier-Jacobi coefficients and the minimal representation

To this point, there has been a perfect analogy between the topological amplitude on a

Hermitian symmetric tube domain and a Jacobi theta series: in either case, the function

satisfies a holomorphic heat equation ((1.1) or (2.74)), and can be written as a matrix

element in the Schrödinger-Weil representation of a non-reductive group G̃ = G n H, as

Ψ(g) = 〈Ψ|g|Ω〉0. (3.37)

Moreover, in each case the heat equations obeyed by Ψ(g) follow directly from operator

equations (1.7), (3.20) which hold in the Schrödinger-Weil representation.

It is natural to ask whether this analogy can be pursued further. As discussed in

the introduction, the Schrödinger-Weil representation of SL(2, R) n H occurs inside the

metaplectic representation of a larger group Sp(4, R), the annihilator of which contains the

operator equation (1.7). Can one similarly obtain the Schrödinger-Weil representation of

G̃ and the operator equation (3.20) from a representation of a larger reductive group G′?

There is a natural candidate for this G′ which is well motivated from physics: upon

reducing N = 2, d = 4 supergravity on a circle to three dimensions, the vector multiplet

moduli space M is enlarged to a quaternionic-Kähler space known as the “c-map” of M.

When M is a Hermitian symmetric tube domain G/K of complex dimension nv, its c-map

is a quaternionic-Kähler symmetric space G′/(Gc×SU(2)), of real dimension 4nv +4. Here

Gc is a compact real form of G. We tabulate the groups in question in Table 3.

Just as G was the “conformal group” associated to a Jordan algebra J , the group G′

can be described as the “quasi-conformal group” associated to the same J [26, 28]. The

reason for this terminology is that G′ can be characterized as the invariance group of the

“quartic light-cone” in VC,

I4(p
I − p̄I , qI − q̄I) + 2(k − k̄ + pI q̄I − p̄IqI)

2 = 0, (3.38)

14One might ask where exactly we went wrong. Presumably the issue is that in constructing Ψhol by

the expression (3.23) we are trying to analytically continue the matrix elements of the Schrödinger-Weil

representation beyond their actual domain of analyticity. A symptom of this is that the states |Ω〉
t

which

we use are badly non-normalizable.
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G K G′ K ′ nv

SU(1, 1)×
U(1) × U(1) × SO(n) SO(n + 2, 4)

SU(2) × SU(2)
n + 1

SO(2, n) ×SO(n + 2)

SL(2, R) U(1) G2(2) SU(2) × SU(2) 1

Sp(6, R) U(1) × SU(3) F4(4) SU(2) × Sp(6) 6

SU(3, 3) U(1) × SU(3) × SU(3) E6(2) SU(2) × SU(6) 9

SO∗(12) U(1) × SU(6) E7(−5) SU(2) × SO(12) 15

E7(−25) U(1) × E6 E8(−24) SU(2) × E7 27

Table 3: Isometry groups G′ of the moduli spaces occurring upon dimensional reduction from 4

to 3 dimensions, with their maximal compact subgroups K ′, and the corresponding G, K from 4

dimensions. All groups are given only up to finite covering or finite quotient.

−3 −2 −1 0 1 2 3

2 Z

1 iq̂0 iq̂i ip̂i ip̂0

0 Si Di
j ,D,∆ Ti

−1 iQ̂0 iQ̂i iP̂i iP̂0

−2 Z̃

Table 4: A list of the generators of the Lie algebra g′, with two gradings, by D (horizontal) and

by ∆ (vertical). This extends figure 2, which was the analogous picture for g̃ ⊂ g′.

more precisely, G′ is the group leaving the left side of (3.38) invariant up to a multipli-

cation by a function of (pI , qI , k) times a function of (p̄I , q̄I , k̄). The twistor space of the

quaternionic-Kähler space G′/Gc × SU(2) admits a Einstein-Kähler metric whose Kähler

potential can be shown to be proportional to the logarithm of (3.38), making the symmetry

under G′ manifest [54].

The Lie algebra g′ has a bigrading extending those of g and g̃, with a corresponding

picture extending Figure 2, given in Figure 4. Note in particular that Z is not a central

generator in g′: together with Z̃ and ∆ it generates an sl(2, R) subalgebra of g′. The group

G̃ is then the centralizer of Z inside G′. This implies that if one begins with a representation

H′ of G′ and then reduces H′ by fixing Z to some real value ~,15 the resulting space H~

will be a representation of G̃.

Having found the candidate G′, it remains to exhibit some H′ such that the corre-

sponding H~ is the Schrödinger-Weil representation of G̃. It turns out that the desired H′

is an analogue of the metaplectic representation of Sp(4, R), known as the minimal repre-

sentation of G′. These representations have been studied extensively in the mathematics

literature, e.g. [55 – 62], and also by physicists, e.g. [26 – 28, 63 – 69]. The action of the

generators of g′ on functions in nv + 2 variables has been given explicitly in [28, 67, 69] for

simple groups in their quaternionic real form, which is the case presently relevant for us;

however, the polarization chosen there was not the same as the real polarization we used

15To be precise, one defines H~ as a “space of coinvariants,” H~ = H/{Zψ − i~ψ : ψ ∈ H}.
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in describing the Schrödinger-Weil representation above, making a direct comparison diffi-

cult. Now we sketch a realization of the minimal representation which makes the relation

more transparent. The representation space H′ consists of functions f(pI , y) in nv +2 vari-

ables. The generators of g̃ ⊂ g′ are just rescaled versions of those in the Schrödinger-Weil

representation:

Z 7→ iy2, (3.39)

iq̂0 7→ y
∂

∂p0
, iq̂i 7→ y

∂

∂pi
, ip̂i 7→ iypi, ip̂0 7→ iyp0, (3.40)

Si 7→ − i

2
Cijk ∂2

∂pj∂pk
+ pi ∂

∂p0
, Ti 7→ +

i

2
Cijkp

jpk − p0 ∂

∂pi
, (3.41)

Rj
i 7→ δj

i p
0 ∂

∂p0
− pj ∂

∂pi
+

1

2
CiklC

jnl

(
pk ∂

∂pn
+

∂

∂pn
pk

)
. (3.42)

In particular, fixing y = 1 we clearly recover the Schrödinger-Weil representation of G̃

with ~ = 1; more generally one could fix y to any value, giving the Schrödinger-Weil

representation with ~ = y2. The other generators of g′ can also be described explicitly.

The generator ∆ ∈ g′ simply counts the degree in y,

∆ 7→ y
∂

∂y
+

1

2
. (3.43)

To obtain the rest of g′ it is enough to give the action of Z̃, since iQ̂I = [Z̃, iq̂I ] and

iP̂I = [Z̃, ip̂I ]; this action can be given in terms of the quartic invariant,

Z̃ 7→ 1

2

∂2

∂y2
− 1

4y2

(
I4(p̂I , q̂I) + κ

)
, (3.44)

where κ depends on the choice of ordering one makes in I4.

Since we have seen that the topological string state |Ψ〉 lives in the Schrödinger-Weil

representation H~=1 of G̃, the existence of this extension of the Schrödinger-Weil represen-

tation suggests that there could also exist a one-parameter generalization of the topological

string. We will speculate on its physical meaning in the next section.

So far we have been discussing the representation theory of the real groups G̃ and

G′ without regard to their integral subgroups. But this discussion has an automorphic

counterpart, which in our language amounts to studying not just the relation between

Hilbert spaces H~ and H′, but also some special states which are invariant under discrete

subgroups. Such states give rise to automorphic forms for the corresponding groups. The

correspondence is easily described in the case of G′ = Sp(4, R): given a holomorphic

Siegel modular form Θ(τ, ρ, z) for Sp(4, R) one can obtain holomorphic Jacobi forms for

SL(2, R) n H by Fourier expanding Θ in one of its three complex variables,

Θ(t, ρ, z) =

∞∑

m=1

θm(t, z)eimρ. (3.45)

Each θm(t, z) is then a Jacobi form of index m. Now how about our case, where Sp(4, R)

is replaced by G′? The minimal representation of G′ is in some cases known to be auto-

morphic, so there is a natural candidate automorphic form Θ, see e.g. [61, 70, 71]. The

– 29 –



J
H
E
P
1
2
(
2
0
0
6
)
0
7
0

automorphic extension of our discussion above would involve expanding Θ in ei~ to obtain

Jacobi forms associated to the Schrödinger-Weil representation of G̃. As far as we know

such an expansion is not in the mathematics literature, although some of the necessary

ingredients have been studied in [72], which also discusses similar expansions for other

“small” representations of G′.

4. Discussion

In this paper, we have shown that the holomorphic anomaly equations for the topological

string amplitude can be rephrased as a heat equation for a purely holomorphic section,
[

∂

∂ti
− i

2
Cijk

∂2

∂yj∂yk
+ yi

∂

∂w

]
Ψhol(t;w, yi) = 0. (4.1)

Moreover, in the case where the moduli space M is a Hermitian symmetric tube domain

G/K, we have shown that the general solution can be written as a matrix element

Ψhol(t; y) = 〈Ψ| exp(yI p̂I) exp
(
tiTi

)
|Ω〉 (4.2)

in the Schrödinger-Weil representation of a non-reductive group G̃ = G n H. The holo-

morphic anomaly equation (4.1) then follows from identities in the annihilator of the

Schrödinger-Weil representation, which moreover can be derived by embedding in the min-

imal representation of a larger reductive group G′.

We close with a few comments and speculations.

An extended topological amplitude. The realization of the holomorphic anomaly

equation inside the Schrödinger-Weil representation of G̃ is not surprising in light of the

wave function interpretation. In our opinion, though, its natural embedding into G′ lends

credence to the idea that there should exist a one-parameter generalization of the usual

topological string amplitude, attached to the minimal representation of G′. The extra

parameter is ~, the eigenvalue of Z, which was fixed to ~ = 1 in the Schrödinger-Weil

representation we used.

Now, what could the meaning of the extra parameter ~ be? Here we present two

speculations, both relying on the fact that the group G′ can be interpreted physically as

the isometry group after compactification on a circle to three dimensions. First, note that

by T-duality along the circle (exchanging IIA and IIB) followed by decompactification to

4 dimensions, G′ can be realized as the isometry group of a hypermultiplet moduli space

in 4 dimensions. It is thus natural to conjecture that the “generalized topological string

amplitude” should compute the infinite series of higher-derivative corrections F̃g on this

hypermultiplet moduli space. The extra parameter ~ would then be related to the presence

of the “universal hypermultiplet” containing the physical string coupling, controlling the

strength of the spacetime instanton corrections. To make this proposal sharper it would be

useful to have an off-shell superspace description of the hypermultiplet derivative couplings,

perhaps along the lines of [73].

For the other speculation we need to discuss how the Heisenberg generators in G̃

are realized in G′. They occur as shift symmetries for new scalars that come from the
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dimensional reduction from 4 to 3 dimensions: in particular, the central generator Z acts

by shifting the scalar which arises from dualization of the d = 3 gauge field gµt. This

scalar can be thought of as a dual potential for the Taub-NUT charge, in which case

fixing Z is equivalent to fixing the NUT charge of the 4-dimensional spacetime. As was

exploited in [17, 74], T-dualizing the space with ~ units of NUT charge leads to ~ NS5-brane

instantons wrapped on X [75]. In particular, suppose we start with the IIA theory; then we

wind up with ~ NS5-brane instantons of Type IIB. In [74, 76] the ~ = 1 case of this duality

was used to argue that the partition function of the single NS5-brane instanton captures

the A model partition function on X; this gave a physical interpretation to the results

of [77 – 79], which argued that the A model partition function can be computed using the

maximally supersymmetric U(1) gauge theory on X, mathematically interpreted as the

U(1) “Donaldson-Thomas” theory [80]. This suggests that our “generalized topological

amplitude” should include not only the U(1) gauge theory but also the higher U(~) theories

for all ~; their partition functions should be organized into a single vector in the minimal

representation of G′.

While these two proposals are both speculative, at least they may be consistent with

one another: it is expected that the hypermultiplet moduli space should be corrected by

NS5-brane instantons, so to say that the generalized amplitude computes corrections to the

hypermultiplet moduli space is not unrelated to saying it computes the partition function

of NS5-brane instantons. Moreover, they are broadly consistent with the OSV conjecture,

since the instantons correcting the three-dimensional vector-multiplet moduli space are

four-dimensional black holes running along the thermal circle, T-dual to the NS5-brane

instantons. We are hopeful that a proper understanding of the meaning of the extended

topological amplitude will lead to an exact form of the OSV conjecture, valid at finite

values of the charges, along the lines of the ideas in [81, 11].

Quantizing the intermediate Jacobian. One of the main themes of this paper has

been the analogy between the topological string partition function Ψhol and the Jacobi theta

series θ(τ, z). There is one crucial property of θ(τ, z) which we have mostly overlooked: it

transforms simply under shifts z → z + 1, z → z + τ . Geometrically, these transformations

reflect the fact that θ arises not from quantization of the linear space H1(T 2, R) but from

quantization of the Jacobian torus, H1(T 2, R)/H1(T 2, Z). Equivalently, one can continue

to think in terms of the linear space, but require invariance under the integer form of the

Heisenberg group. This is a very strong constraint on the state, determining it up to at

most a finite-dimensional ambiguity.

From the point of view of the worldsheet of the topological string theory, there is no

obvious reason why the topological string state should have such an invariance. On the

other hand, if one takes seriously the embedding G̃ ⊂ G′ we advocated above, one finds that

the phase space variables in the topological string get a physical interpretation: they are

the Wilson lines of the nv+1 gauge fields around the d = 4 → d = 3 compactification circle.

As such, they are naturally circle-valued, and one might expect that any partition function

which depends on them will have to be periodic in an appropriate sense. One would then be

led to consider quantization of the intermediate Jacobian J = H3(X, R)/H3(X, Z), with
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the corresponding theta functions as candidates for the full topological string partition

function.16

One might well be skeptical of whether such a simple and universal object could re-

ally capture all the complexity of the topological string theory on Calabi-Yau threefolds.

Moreover, even if the topological string state indeed turned out to be invariant under shifts

by H3(X, Z), there would still be the problem of extracting the perturbative expansion.

This is not as trivial as it sounds: as we discussed in section 3.7, in the complex structure

we are using, the geometric description of such a theta function would be as a class in

sheaf cohomology H1 rather than as a function. Said differently, the series defining such

a theta function is badly divergent. Still, the case of a Calabi-Yau one-fold gives some

ground for optimism: the partition function which counts covering maps to the torus can

indeed be expressed in terms of a “generalized Jacobi form,” defined by a formal product

which definite modular properties [83, 84]; in particular, the SL(2, Z) transformation of

the variables seems to have a natural interpretation in terms of quantization of a phase

space in the 4-dimensional representation of SL(2, R).

Extensions to N = 4 and N = 8. In this paper we have been concerned only with

the case of N = 2 supersymmetry. Given our focus on cases where the moduli space is

a symmetric space, it might have seemed more natural to consider the N = 4, N = 6

and N = 8 theories first, since in those cases the moduli space is always a symmetric

space, which we again write as G′/K ′ in d = 3. Then one can construct the minimal

representation of G′; its matrix elements are very special functions on G′, obeying a large

number of differential equations, which could be easily written down much as we did above

in the N = 2 case. It is natural to wonder whether these equations arise somewhere in

physics.

There is an important difference between the N = 2 supergravities defined by cubic

Jordan algebras, which we considered above, and the N = 8 theory or the N = 4 theories

coupled to vector multiplets. Namely, in general the groups G occurring in the latter cases

in d = 4 do not have holomorphic discrete series representations. Roughly this means

one should not expect to construct holomorphic “wave functions” from the representations

of G. So the analogues of the anomaly equations which appear must have a somewhat

subtler interpretation. One notable exception is the N = 4 supergravity coupled to 2 vector

multiplets, where the moduli space in d = 4 is (SL(2, R)×SO(2, 6))/(U(1)×U(1)×SO(6)).

The existence of holomorphic discrete series in this case may be related to the fact that

this theory can be obtained by consistent truncation from the N = 6 theory, for which the

corresponding group SO∗(12) does admit holomorphic discrete series representations.

In the case of Type II string theory compactified on K3 one might ask whether the

differential equations one obtains are related to the holomorphic anomaly of the N = 4

topological string on K3 [85, 86]. To obtain such a relation one would presumably have

16This intermediate Jacobian has appeared in [82], where it was argued that, if one wraps an M-theory

fivebrane on X, the dependence of its partition function on a flat background C field is given by a theta

function similar to those we are discussing. A similar argument was made in [17] for the “classical part” of

the partition function of a stack of NS fivebranes in Type IIA.
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to decompactify from d = 3 to d = 6, which should correspond to fixing 3 generators of

G′ (analogous to the N = 2 case where we decompactified from d = 3 to d = 4 and fixed

the single generator Z.) The centralizer of these generators in G′ = O(24, 8) should be

some nilpotent extension G̃ = O(20, 4) n N , where O(20, 4) arises as the isometry group

of the moduli space in d = 6. Then the natural conjecture, analogous to what we found

in the N = 2 case, is that the anomaly equations of the N = 4 topological string can be

interpreted as statements about some representation of this G̃.

One can similarly ask whether any meaning can be attached to the differential equa-

tions which arise in the N = 8 case from the minimal representation of E8(8).
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A. Holomorphic ambiguities and real polarization

In this appendix, we discuss the relation between the “holomorphic ambiguities” found by

BCOV in their procedure for solving the holomorphic anomaly equations recursively and

the real polarized topological amplitude defined in (A.9).

In [6, section 6.2], BCOV introduce a variant of (2.9),

Ψ̃BCOV(ti, t̄j̄ ; x̃i, ϕ; λ̃) = λ̃1− χ

24 exp

[
W

(
ti, t̄j̄;

x̃i

1 − ϕ
,

λ̃

1 − ϕ

)]
. (A.1)

Here λ̃ and ϕ are redundant variables: ϕ describes variations of the inverse topological

coupling λ−1, while λ̃ only serves to organize the perturbative series. Then the first anomaly

equation (2.10) becomes

∂t̄i =
λ̃2

2
e2KC̄īj̄k̄g

jj̄gkk̄ ∂2

∂x̃j∂x̃k
− gīj x̃

j ∂

∂ϕ
(A.2)

Moreover, BCOV observe that the “conjugate” equation

∂t̄i = − λ̃2

2
e2KC̄īj̄k̄g

jj̄gkk̄ ∂2

∂x̃j∂x̃k
− gīj x̃

j ∂

∂ϕ
(A.3)
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is solved by

Ψ̃Y (t, t̄; λ̃, x̃, ϕ) = exp

[
− 1

2λ̃2

(
∆ijx̃

ix̃j + 2∆iϕx̃iϕ + ∆ϕϕϕ2
)

+
1

2
log

(
det∆

λ̃2

)]
(A.4)

where the “inverse propagator” ∆ is defined to obey the equations

∆ =

(
∆ϕϕ ∆iϕ

∆iϕ ∆ij

)
, ∆−1 =

(
−2S −Si

−Si −Sij

)
=

(
−2S −gij̄∂j̄S

−gij̄∂j̄S −gij̄∂j̄(g
jk̄∂k̄S)

)
, (A.5)

and S is a local section of L−2 whose third derivative reproduces the tree-level three-point

function,

Cīj̄k̄ = e−2KDīDj̄Dk̄S. (A.6)

Note that this does not define S unambiguously. Using (A.2), (A.3) BCOV conclude that

the integral

Z(t, t̄) =

∫
dx̃dϕ Ψ̃BCOV(t, t̄; x̃, λ̃, ϕ) ΨY (t, t̄; x̃, λ̃, ϕ) (A.7)

is in fact independent of t̄, and identify it as the generating function of the “holomorphic

ambiguities” which arise at each genus upon integrating the first anomaly equation.

Now let us relate this construction to the intertwiner from Verlinde’s ΨV to the real

polarized ΨR. The first thing to notice is that Eq. (A.2) is identical to (2.15) after shifting

ϕ → ϕ + 1 in (A.1), setting λ̃ = 1 and identifying ϕ = −λ−1. Next, we invert the formula

(2.57) which gave the Bogoliubov transformation from ΨR to ΨV, obtaining

ΨR(pI) =

∫
dxI dx̄I

√
det[Im τ ] e−

1

2
xI [Im τ ]IJ x̄J

Ψ∗
V(pI ;XI , X̄I ; x̄I) ΨV(XI , X̄I ;xI). (A.8)

The integral over x̄I is easily evaluated (at least formally), leading to

ΨR(pI) =

∫
dxI

√
det[Im τ ] exp

[
i

2
pI τ̄IJpJ − pI [Im τ ]IJxJ +

1

4
xI [Im τ ]IJxJ

]

× ΨV(XI , X̄I ;xI).

(A.9)

Setting pI = 0 in this expression, and replacing the large phase space variables xI in terms

of (xi, λ) in the exponent, we find

ΨR(pI) =

∫
dλ−1dxi ΨV(XI , X̄I ;xi, λ)

√
det[Im τ ]

exp

[
1

4

(
λ−2XI [Im τ ]IJXJ + 2λ−1e−K/2xif I

i [Im τ ]IJXJ + e−Kxif I
i [Im τ ]IJfJ

j xj
)]

.

(A.10)

This coincides with (A.4) if we identify

∆ij = −2e−Kf I
i [Im τ ]IJfJ

j , (A.11)

∆iϕ = 2e−K/2f I
i [Im τ ]IJXJ , (A.12)

∆ϕϕ = −2XI [Im τ ]IJXJ , (A.13)
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where we introduced the standard special geometry notation f I
i := eK/2DiX

I .

Inverting the matrix ∆ with these entries, we obtain

S = e2KX̄I [Im τ ]IJX̄J , (A.14)

Sī = 2e3K/2 f̄ I
ī [Im τ ]IJX̄J , (A.15)

Sīj̄ = 2eK f̄ I
ī [Im τ ]IJ f̄J

j̄ . (A.16)

Then using the special geometry identities

XI(∂i[Im τ ]IJ)XJ = f I
i (∂j [Im τ ]IJ)XJ = 0, f I

i (∂j [Im τ ]IJ)fJ
k = − i

2
e−KCijk, (A.17)

we check that S given by (A.14) indeed satisfies (A.6), and moreover that Sī = DīS, Sīj̄ =

DīDj̄S as required in (A.5).

We conclude that, for the S given in (A.14), Z(t) is proportional to the wave function

in the real polarization at pI = 0, namely

Z(t) = ef1(t)ΨR(0) (A.18)

where the exponential factor arises from the redefinition (2.14). We emphasize that (A.18)

holds only for the S given in (A.14), which need not be globally well defined; for the choice

of S made in [6], Z(t) in fact contains the infinite series of holomorphic ambiguities.

B. Wave function in the positive-definite polarization

With a little more work, we can also determine the intertwiner ΨW from the real polariza-

tion to a positive definite (“Weil”) polarization given by the Hodge ?: as discussed below

(2.30), this ΨW should be obtained from the intertwiner ΨV to the indefinite (“Griffiths”)

polarization by Fourier transforming from λ−1 to a new variable µ. So we begin from the

formula (2.60) for ΨV, replace the large phase space variables xI with the small phase space

ones (xi, λ) using (2.37), and then formally Fourier transform

ΨW(pI ;XI , X̄I ;xi, µ) =

∫
dλ−1 exp

(
λ−1µ

)
ΨV(pI ;XI , X̄I ;xi, λ). (B.1)

We thus obtain ΨW in terms of the negative-definite period matrix

NIJ = τ̄IJ + 2i
[Im τ ]IKXK [Im τ ]JLXL

XK [Im τ ]KLXL
, (B.2)

namely, we find

ΨW(pI ;XI , X̄I ;xi, µ) =

√
det[Im τ ]√

XI [Im τ ]IJXJ
exp

[
i

2
pINIJpJ − 4ieKpI [ImN ]IJX̄Jµ

−e−K/2pI [ImN ]IJfJ
j xj + 4e2KX̄I [ImN ]IJX̄Jµ2

−2ieK/2 f I
i [ImN ]IJX̄Jxiµ − 1

4
e−Kf I

i [ImN ]IJfJ
j xixj

]
.

(B.3)
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Here we used the special geometry properties

X̄I [ImN ]IJX̄J =
1

4

e−2K

XI [Im τ ]IJXJ
(B.4)

f I
i [ImN ]IJX̄J = −1

2

e−K f I
i [Im τ ]IJXJ

XI [Im τ ]IJXJ
(B.5)

f I
i [ImN ]IJfJ

j =
(f I

i [ImN ]IKXK)(fJ
j [ImN ]JLXL)

XI [Im τ ]IJXJ
− f I

i [Im τ ]IJfJ
j (B.6)

pI [ImN ]IJX̄J = −1

2
e−K pI [Im τ ]IJXJ

XI [Im τ ]IJXJ
(B.7)

Defining new large phase space coordinates (for H1,2 ⊕ H0,3) by

wI = 2i µX̄IeK +
1

2
xiDiX

I , (B.8)

the intertwiner between the real and positive-definite polarizations takes the simple form

ΨW(pI ;XI , X̄I ;wI) = (B.9)

=

√
det[Im τ ]√

XI [Im τ ]IJXJ
exp

[
i

2
pINIJpJ − 2pI [ImN ]IJwJ − wI [ImN ]IJwJ

]

which is closely similar to (2.60).
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[47] J. Faraut and A. Korányi, Analysis on symmetric cones, Oxford Mathematical

Monographs. The Clarendon Press Oxford University Press, New York, 1994. Oxford Science

Publications.

[48] D.V. Alekseevsky and V. Cortés, Classification of stationary compact homogeneous special

pseudo-Kähler manifolds of semisimple groups, Proc. London Math. Soc. (3) 81 (2000), no. 1,

211–230.

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA21%2C5043
http://arxiv.org/abs/hep-th/0606209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB361%2C59
http://arxiv.org/abs/hep-th/9505162
http://arxiv.org/abs/hep-th/0512227
http://arxiv.org/abs/math.ag/0601395
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB455%2C165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB455%2C165
http://arxiv.org/abs/hep-th/9508064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C2%2C445
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB250%2C385
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C149%2C307
http://arxiv.org/abs/hep-th/9112027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB293%2C94
http://arxiv.org/abs/hep-th/9207091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB400%2C463
http://arxiv.org/abs/hep-th/9210068


J
H
E
P
1
2
(
2
0
0
6
)
0
7
0

[49] M. Günaydin, Generalized conformal and superconformal group actions and jordan algebras,

Mod. Phys. Lett. A 8 (1993) 1407 [hep-th/9301050].

[50] B.H. Gross, A remark on tube domains, Math. Res. Lett. 1 (1994), no. 1, 1–9.

[51] M. Günaydin, AdS/CFT dualities and the unitary representations of non- compact groups

and supergroups: wigner versus dirac, hep-th/0005168.

[52] A. Polishchuk, Abelian varieties, theta functions and the Fourier transform, vol. 153 of

Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2003.

[53] I. Zharkov, Theta functions for indefinite polarizations, J. Reine Angew. Math. 573 (2004)

95–116, math.AG/0011112.

[54] M. Günaydin, B. Pioline, M. Rocek, and S. Vandoren. To appear.

[55] A. Joseph, Minimal realizations and spectrum generating algebras, Commun. Math. Phys. 36

(1974) 325.

[56] D. Kazhdan and G. Savin, The smallest representation of simply laced groups, in Festschrift

in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat

Aviv, 1989), vol. 2 of Israel Math. Conf. Proc., pp. 209–223, Weizmann, Jerusalem, 1990.

[57] G. Savin, An analogue of the Weil representation for G2, J. Reine Angew. Math. 434 (1993)

115–126.

[58] R. Brylinski and B. Kostant, Minimal representations, geometric quantization, and unitarity,

Proc. Nat. Acad. Sci. U.S.A. 91 (1994), no. 13, 6026–6029.

[59] B.H. Gross and N.R. Wallach, A distinguished family of unitary representations for the

exceptional groups of real rank = 4, in Lie theory and geometry, vol. 123 of Progr. Math.,
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[84] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in

The moduli space of curves (Texel Island, 1994), vol. 129 of Progr. Math., pp. 165–172,
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